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Electrophoresis of slender particles 
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The hydrodynamic theory of slender bodies is used to model electrophoretic motion of 
a slender particle having a charge (zeta potential) that varies with position along its 
length. The theory is limited to systems where the Debye screening length of the 
solution is much less than the typical cross-sectional dimension of the particle. A 
stokeslet representation of the hydrodynamic force is combined with the Lorentz 
reciprocal theorem for Stokes flow to develop a set of linear equations which must be 
solved for the components of the translational and angular velocities of the particle. 
Sample calculations are presented for the electrophoretic motion of straight spheroids 
and cylinders and a torus in a uniform electric field. The theory is also applied to a 
straight uniformly charged particle in a spatially varying electric field. The uniformly 
charged particle rotates into alignment with the principal axes of VE,  ; we suggest that 
such alignment can lead to electrophoretic transport of particles through a small 
aperture in an otherwise impermeable wall. The theory developed here is more general 
than just for electrophoresis, since the final result is expressed in terms of a general 
‘slip velocity’ at the surface of the particle. Thus, the results are applicable to 
diffusiophoresis of slender particles if the proper slip-velocity coefficient is used. 

1. Introduction 
Phoretic processes are characterized by localization of the driving forces in a 

boundary layer near the surface of a particle suspended in a fluid (Anderson 1989). In 
electrophoresis the particle moves because the applied electric field exerts a force on the 
electrical double layer at the surface. The thickness of the boundary layer is of order 
of the Debye screeniqg length of the solution ( K - ’ ) ;  typical values of K-’ in aqueous 
solutions are l(t100 A. Generally the particle size exceeds the Debye screening length; 
this includes a broad range of colloidal species from large biomolecules to inorganic 
particles such as clay. 

There is a considerable literature on the theory of electrophoresis (for example, 
Hunter 1981 ; Dukhin & Derjaguin 1974; O’Brien & White 1978; Saville 1977; O’Brien 
1983). While most of this work has been concerned with steady external electric fields, 
electrophoresis in high-frequency fields has been modelled (O’Brien 1990; Mangelsdorf 
& White 1992). The basic physical model is a spherical particle of radius R having a 
uniform electrostatic potential, called the ‘zeta potential’ (0, on the surface. The zeta 
potential is related to the charge per unit area of the surface through models for the 
double layer. The electrophoretic mobility, defined as the particle’s velocity divided by 
the applied electric field, depends on KR and y. The electrophoresis of uniformly 
charged spheroids has also been modelled when the zeta potential is about kT/e or less 
(Yoon & Kim 1989) or when the zeta potential is arbitrarily large but the Debye 
screening length is small relative to particle dimensions (O’Brien & Ward 1988). 

Nature is not always obliging and offers colloidal species that are non-uniformly 
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FIGURE 1. Examples of slender colloidal particles: (a) needlelike mineral, ( h )  heteroaggregate of 
simple particles, (c) charged polymcr chain or bundle of chains. (d) torus (e.g. DNA plasmid). 

charged and non-spherical. Hydrodynamic theories for non-uniformly charged 
particles have been developed over the past decade. The geometries considered thus far 
include spheres (Anderson 1985; Yoon 1991 ; Solomentsev, Pawar & Anderson 1993), 
general ellipsoids (Fair & Anderson 1989), and chains of spheres (Fair & Anderson 
1990; Keh & Yang 1991). The interesting results from these analyses include the 
following: even moments of < cause a non-isotropic mobility, which means the 
magnitude and direction of Ihe particle’s velocity is a function of its orientation with 
respect to the applied electric field; odd moments of < lead to alignment of the particle 
with the applied field; and a neutral particle can have a significant electrophoretic 
velocity. Some of these predictions have been observed with aggregates of colloidal 
spheres (Fair 1990; Fair & Anderson 1992; Pawar 1993). 

In this paper we consider slender particles that have an arbitrary distribution of 5 
along their contours. Examples of colloidal structures that might be modelled by 
slender-body theory are shown in figure 1. Theories for Stokes flow about slender 
bodies have been developed to various degrees of approximation (Batchelor 1970; Cox 
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1970; Keller & Rubinow 1976; Johnson & Wu 1979; Johnson 1980). In the next section 
we combine the concept of ‘slip velocity’, which arises in phoretic processes (Anderson 
1989)’ with a stokeslet representation of the stress on a slender particle to obtain 
relations between the velocity of the particle and the variation of the slip velocity along 
the centreline of the particle. Use is made of the Lorentz reciprocal theorem for Stokes 
flow and the zero-force and zero-couple constraints that apply to phoretic transport to 
obtain a set of algebraic equations (see (2.13)) that must be solved for the components 
of the translational and angular velocities of the particle. Some examples of different 
particle geometries (contours) are considered in 93  to demonstrate the application of 
the theory to electrophoresis. In $4 the theory is applied to a uniformly charged straight 
particle in an electric field that varies with position. The result is used to estimate the 
field required to align straight particles in converging electric field lines at the entrance 
of a small hole in a plane wall. 

2. General model 

2.1. Slip velocity 
Electrokinetic phenomena result from stresses on the charge double layer at a 
solid/liquid interface. The double layer consists of a ‘fixed charge’ on the surface and 
a diffuse ‘space charge’ in the adjoining liquid. The space charge balances the fixed 
charge, so that the entire double layer is neutral. The simplest theory for the charge 
distribution in the equilibrium double layer is the Gouy-Chapman model (Hunter 
1981 ; Russel, Saville & Schowalter 1989) which treats the free ions in the liquid as 
point charges and considers the fixed charge at the solid interface to be ‘smeared’ into 
a continuum. Even with its simplifying assumptions, the Gouy-Chapman model gives 
results for the distribution of space charge that agree well with more rigorous theories 
based on the statistical mechanics of finite-size ions and solvent molecules. 

An important parameter of the double layer is the Debye screening length, K - ~ ,  

which is inversely proportional to the square root of the electrolyte concentration i,n the 
solution; for 0.1 molar sodium chloride in water at room temperature, K - ~  = 9.6 A. At 
distances ( y )  greater than K - ~  from a planar surface, the space-charge density and the 
double-layer potential both decay to zero as exp (- ~ y ) .  This exponential decay is 
important when modelling electrokinetic flows in unbounded fluids because the charge 
on the solid surface is essentially screened for y greater than several values of K-’. 

The term ‘electro-osmosis’ refers to electrokinetic flow past a stationary charged 
solid when an electric field is applied. An electric field originating from an external 
source exerts a body force on the space charge which is transmitted to the liquid within 
the double layer 0, - O(K-’)). The velocity field is described by the Stokes equations 
including this electrical force. The general description of electrokinetics ignores second- 
order charge effects, such as media polarization which would introduce terms of O(E2) 
(Melcher 1981). If the radius of curvature of the solid is much larger than K - ~  then the 
space charge is not distorted and the electro-osmotic velocity is parallel to the solid 
surface in the direction of the tangential field, E‘. By using Poisson’s equation to relate 
the space charge to the variation in electrostatic potential and integrating the Stokes 
equation for one-dimensional flow across the double layer, one obtains the Helmholtz 
equation for the electro-osmotic ‘slip velocity’ u :  
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g is the ‘zeta potential’ normalized by the thermal potential kT/e ,  and D and 7 are the 
permittivity and viscosity of the liquid. The term [DkT/rp]  equals 1.80 (pm s-’)/(volt 
cm-l) for water at 20 “C. On a lengthscale characteristic of the particle’s geometry, 
which is much greater than K- ’ ,  the conventional ‘no-slip’ condition on the velocity 
field at the particle’s surface is relaxed and the fluid moves at a velocity u relative to 
the solid surface. Note that osmotic flows, which result from solute concentration 
gradients along a surface, can also lead to a slip velocity (Anderson 1989). 

When considering the hydrodynamics of electrophoresis, (2.1) forms the inner 
boundary condition for flow outside the double layer. The concept of slip velocity is 
very useful for describing the hydrodynamics of electrophoresis and other electrokinetic 
transport processes when K-’ is much smaller than the radius of curvature of the solid 
surface (Anderson 1989; Acrivos, Jeffrey & Saville 1990). If the particle is uniformly 
charged with zeta potential [, and if ( K R ) - ~  [exp (1<,1/2)- I]  + 1 at all positions on the 
surface, where R is the mean radius of curvature, then the translational (v) and 
angular (0) velocities are given by the following no matter what the shape or 
orientation of the particle as long as the applied electric field (E,) is independent of 
position : 

D = 0. I 

The above relation for U is attributed to Smoluchowski (Hunter 1981). 
If K - ~  is comparable to the radius of curvature of a particle, (2.2) is no longer correct 

and the particle’s velocity is a function of particle size and shape. References are made 
in the previous section to theories for spherical and spheroidal particles having finite 
KR. The effect of finite KR for long straight cylinders of radius R has also been 
examined. Henry (1931) considered particles with /<,I of order 1 or less and arbitrary 
KR but very large KL, where L is the half-length of the cylinder. The coefficient relating 
the cylinder’s translational velocity to the applied field is no longer a scalar as shown 
in (2.2), rather it has different components for the directions parallel and perpendicular 
to the axis of the cylinder. Sherwood (1982) extended the analysis to cases where 
KR 6 1 but KL is arbitrary. Keh & Chen (1993) considered the case KR + 1 and found 
that the electrophoretic mobility for the applied field directed perpendicular to the 
cylinder’s axis depends on the parameter h = 2 ( ~ R ) - l  [exp (1&,1/2) - 11 in the same way 
as the mobility of a uniformly charged sphere of the same radius (Dukhin & Derjaguin 
1974). 

We will not take into account these more sophisticated analyses of the electrokinetics 
of cylinders in our hydrodynamic model for slender bodies, as described below, 
because we require ~ b ,  % Ins-’ where h, is the radius of the slender body and e is the 
slenderness parameter. Therefore, we rely on (2.1) to provide the inner boundary 
condition for the velocity field outside the double layer. 

2.2. Hydrodynamic model 
The configuration of the slender particle is shown in figure 2. It is assumed to be a rigid 
body. The length is 2L and the maximum radius is b,; the slenderness parameter (6) is 
defined as b,/L and is assumed to be small. The cross-section is locally cylindrical with 
a radius b which is a function of the position along the contour (s) which is made 
dimensionless by L. The centreline of the particle is specified by the vector function 
X&); it may be curved as long as the radius of curvature is O(L). A local orthonormal 
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b (A) =radius 
((s) =zeta potential of surface 

20 1 

s = + l  

F T C U R ~  2. General slender body. The centre of the particle (X,) is not necessarily at the centre of 
the contour (s = 0). 

set of unit vectors at each centreline position is defined with e, parallel to the line that 
is tangent to thc contour: 

(2.3) 
dX 1 d2Xo 
Lds’ L’H ds2 ’ eb = e, x e,,, e =-A e =---- 

where H i s  the curvature of the particle’s contour. If the centreline is straight then en 
is chosen to be in the direction of ( I -  e, e,) - E where I is the unit dyadic and E is the 
local electric field. 

U is the translational velocity of the centre of the particle, which is not necessarily 
the point s = 0, and SZ is the angular velocity. We assume that the double-layer 
thickness, which is of the order of the Debye screening length of the solution ( K - ~ ) ,  is 
much smaller than b,. U and SZ are determined by requiring the hydrodynamic force 
and couple on the particle to equal zero. Outside the double layer the velocity field is 
described by the Stokes equations with no electrical body force term 

1 p v - v p  = 0; v.v = 0. (2.4) 
The electrodynamics arc incorporated into the problem by specifying the slip velocity 
u as a function of position s along the centreline. A boundary S+ is defined to enclose 
the particle and its double layer; thus, S’ is displaced from the true surface of the 
particle (Sf’) by a distance of O ( K - ~ ) .  The boundary conditions on the velocity field 
described by (2.4) are : 

on S + :  v =  U + R x r + u ( s ) ,  (2.5a) 

r+m:  v+O, (2.5 b) 

where U and SZ are the (unknown) translational and angular velocities of the particle. 
In the case of electrophoresis u is given by (2.1); however, we shall develop the 
hydrodynamic model for arbitrary u so that the result applies to any phoretic motion 
for which the interfdcial thickness, such as the double layer, is small relative to the 
radius of the particle. The unknown velocities U and 52 are determined by setting the 
hydrodynamic force and couple on S+ equal to zero. 
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For a slender particle the surface S+ w S p  is approximated by R(s) = X&) - X ,  
where X, is the position of the 'centre' of the particle. The velocity field is split into 
two contributions: uh = the velocity in the absence of a slip velocity (u = 0) with U and 
D specified; and ue = the electrokinetic velocity that satisfies (2.4) and (2.5) with both 
U and Q equal to 0 but u an arbitrary function of s. The zero force and couple 
constraints are 

(2.6a) 

(2.6 6) 

where n is the unit normal pointing from S+ into the surrounding fluid and cr is the 
stress dyadic for a Newtonian fluid. U and IR are determined by satisfying (2.6). 

The electrodynamic problem (v') is now circumvented by applying the Lorentz 
reciprocal theorem (Happel & Brenner 1973) to the fluid outside S + .  Since there are no 
body forces in this region (i.e. V - o e  = 0) and all velocities approach zero far from S+,  
we have 

where u* is the velocity that satisfies (2.4) and (2.5) with u = 0 and (U,  D) replaced by 
the constant but arbitrary vectors (U*, a*). On S+ the electrodynamic velocity equals 
u(s). The value of v* on S+ is approximated by the following for a slender body: 

on S + :  u* w U*+Q* xR(s).  (2.8) 

Combining the above two relations gives 

llq+ n - o e -  [U* + s1* x R(s)] dS  = n-o* -u(s) dS. Us+ 
Finally, we use (2.6) to eliminate the electrodynamic stress. The result is 

oh and G* are linear functions of (U,  0) and (V, a*). The above expression provides 
six scalar equations, one for each of the arbitrary components of V and a*, which 
must be solved to obtain the electrophoretic velocities U and 52. 

The stress along the surface of the particle can be expressed in terms of a distribution 
of stokeslets ai(s). For the hydrodynamic flow we write the stress per unit length as 

h ( s ) l  n.ahdq5 = - 8 q i  ai((s) y ,  (2.1 1) 
s=constant i= l  

where I$ is the polar angle about the centreline axis at fixed s. Note that = Ui for 
i = 1 + 3 and K = QiP3 for i = 4 + 6. Equation (2.11) also holds for the arbitrary-flow 
problem with crh replaced by o* and 5 by v.  The force and torque on S +  for the 
purely hydrodynamic part of the problem are 

P"' = - 8 n ~ L  5 & r1 ai(s) ds, Fh) = - 8nyL i 7. R(s) x ai(s) ds. (2.12) 
i=l -1 i = l  
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After combining (2.10) and (2.1 1) and expressing the result in Cartesian components, 
we have the following equations which must be solved for the 6 components of K, the 
first three being U and the second three being 0: 

I 
(2.13) 

nz = 4,5,6: e jKn V; [: RJs) a$(s) ds = - a: up($) ds, 1t: 
(n  = nz-3) 

where cJk? is the permutation tensor. The standard summation convention is used for 
repeated indices, with i over 1 + 6 and ( p ,  j ,  k )  over 1 + 3. The general problem for 
phoretic motion of slender bodies, when the interfacial layer is thin relative to the 
radius, has been reduced to solving the six equations in (2.13). Application of this result 
depends on the model for the slip velocity u. 

One might question why we apply the reciprocal theorem at S+, instead of at S as 
was done by Sherwood (1982) and Teubner (1982). The reason for choosing S+ is that 
we avoid the volume integral of the electrical stresses over the double-layer region. 
Evaluation of this integral would require knowledge of the field variables (electrostatic 
potential, velocity) within the double layer, which means the theory would be model 
specific and considerably more effort would be required to evaluate the particle’s 
velocity than simply solving (2.13). In our approach the only information needed is the 
stokeslet distributions for translation and rotation of the slender particle and the slip 
velocity which is proportional to the field outside the double layer; of course, the 
coefficient of this proportionality depends on the model for the dynamics within the 
double layer. The disadvantage of our approach is that the results are valid only when 
tcbn + 1, as discussed in $5.  

2.3. Determination of the stokeslets 

Several theories are available for determining the stokeslet distributions for a general 
centreline profile Xn(s) and cross-section radius b(s) (Batchelor 1970; Cox 1970; Keller 
& Rubinow 1976; Johnson 1980). While Johnson’s theory is, in principle, accurate to 
O(2 In c), it has the disadvantage of requiring the solution of an integral equation. Cox 
(1970) neglected the ends and derived an explicit method for calculating the stokeslet 
distribution to O((lt~e)-~) for a general centreline profile, as long as the radius of 
curvature of the profile is much greater than b,. Cox’s result can be derived from 
Johnson’s model by expanding x in powers of (lnc)-l. For the examples given in the 
next section, we use Cox’s method to compute the stokeslets needed to solve (2.13), 
except for the toroidal ring and the prolate spheroid because analytical results are 
available with error of O(2Int). 

In general six stokeslet functions, ~‘(s), are needed, one for each component of UY: 
and a*. Equations (6.2) and (6.3) of Cox (1970) can be expressed as 

1 
In c 

4d = ~ Wi - [21- e, et] + {f W’ - [21- 3e, et] + Y i  [21- e, e,]]. (2.14) 

The fluid velocity far from the particle is zero and Wi is the velocity of point s along 
the contour: 

(2.15) 
(translation) i = 1 + 3 : 

(rotation) i = 4 > 6 : FVi = nj R,(s), 
Wj = a,, 
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FIGURE 3. Coordinate definitions for straight particle and torus. The origin of the local 
coordinate system is at the centre of the particle. The torus lies in the 1-3 plane. 

Jtj is the unit tensor, einj is the permutation operator and the index ‘ j ’  denotes one of 
the three fixed Cartesian directions. The function Yi  accounts for effects of velocity 
disturbances originating from distant positions (s’) along the contour: 

(2.16) 

where the primed quantities (’) denote a function of s’ and iv is the dimensionless 
radius (= b(s)/b,). The parameter p is arbitrarily small and is included to avoid a 
singular integral; it is eliminated upon performing the integration. 

The results of applying (2.14)-(2.16) to a straight cylinder arc (see figure 3 for 
coordinates) : 

1 + 2 In ( 2 4  1 - s2)’I2) 

4 (In E ) ~  

s[ 1 - 2 In (2e( 1 - s~)~”)] 
4 (In c ) ~  

a; = , a; = 
1 - 2 In ( 2 4  1 -s ’ ) ’ ’~ )  

8 (In c ) ~  
a; = 

(2.17) 

The subscript is the direction of the force and the superscript is the component of 
velocity ( U ,  for i = 1 + 3 and Q,-, for i = 4 .+ 6). To check the accuracy of Cox’s model, 
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we consider a cylinder with e = 0.1. In figure 4 we compare the stokeslet distribution for 
translation parallel to the cylinder’s axis (a:) as determined from (2.17) to the stress 
found from numerical solution of the Stokes equations using the software FLUENT@ 
(CREARE. X, Inc., Hanover, New Hampshire). The agreement appears good. 

For a prolate spheroid the stokeslet functions a: and a: are constants and a: - s, to 
O(e2 In c). These values are (Johnson 1980): 

Johnson & Wu (1979) derived the following for a torus: 

a’ = - +In (8’y) sin [7c(1+ s)] en 
- 2- 5 In ( 8 / y )  + 2 In2 ( 8 / y )  

- + In ( 8 / y )  cos [7c(1+ s>l e,, 
4- - 8 - 20 In (8 / y )  + 8 ln2 (8 /y )  

1 
a2 = I + 2 In ( 8 / y )  ebr 

a3 = 2 +  5 In@/?)-21n2(8/y) 
-3 +1n(8/y) cos[x(~ +s>le, 

- + sin [n(1+ s)] e,, 
-I- - 8 - 20 ln(8/y) + 8 ln2 (8 /y )  

sin [n( 1 + s)] eb, 
I 

- 3 + 2 In (8 / y )  
616 = 

(2.19) 

where y = xc:. 
2.4. Electrophoretic motion 

The determination of the slip velocity requires the electric field at each point s along 
the cenpeline. Cole (1968) has shown that for a slender particle in a potential field that 
obeys Laplace’s equation, the local gradient of the potential on the scale of L equals 
the undisturbed potential if terms of O ( 2  In c) are neglected. Therefore, the ‘applied 
field’ felt by a local segment of the particle equals Em even if the undisturbed field is 
a function of position on the scale of L. 

The slip velocity on S+ is given by (2.1) when ~b .> 1. Because the particle does not 
conduct charge, the local electric field differs from E,. The tangential field Es on S +  
is given by 

Es  = [e, e, + 2( -eb + e,) (- e ,  sin Q + eb cos Q)].E, (2.20) 

where Q is the polar angle measured from e ,  in the plane perpendicular to the centreline 
direction. Because the hydrodynamic description is at the level of stokeslets, as defined 
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FIGURE 4. Comparison between Cox’s theory (equations (2.14) and (2.1 6)) and a numerical solution 
of the Stokes equations (FLUENT) for a straight cylinder moving parallel to its axis (coordinate 1, 
see figure 3). E = 0.1. 

in (2.1 l), the slip velocity that appears in (2.13) is a circumferential average at constant 
s. This average slip velocity is obtained by averaging E* over 4 ;  when combined with 
(2.1) the result is 

(2.21) 

Both the zeta potential and applied electric field can be functions of s. In the examples 
in the next section we consider a constant electric field with < a function of s. In $4 the 
applied field is a quadratic function of position while 5 is a constant. 

3. Non-uniformly charged particles in uniform fields 
We demonstrate in this section the application of (2.13) to different geometries. The 

slip velocity is given by (2.21) with 6 a function of s but Em a constant. The following 
distribution of zeta potential is assumed for many of the examples { - 1 < s < -k 1) : 

(3.1) 

where ct are constants. We refer to these constants as the ‘monopole’ ‘dipole’ and 
‘quadrupole’ moments for i = 0, 1 and 2. In this section the velocity vectors U and 0 
are made dimensionless by (DkT/yt>) Em and (DkTILye)  E,, respectively, 5 is 
normalized by k T / e ,  and E = E,/E,. 

= 50 + 51 s + !33s2 - 119 

3.1. Straight particles 
There are three non-zero distinct stokeslet functions: a:, a: and CX:, where the subscript 
‘ 1 ’ is the direction of the particle’s axis and ‘ 2’ is the direction defined by the component 
of Em that is perpendicular to the axis (see figure 3). We use the brackets (>  for 
integrals over s: 
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The translational and angular velocities are determined from (2.13) to be 

2 
1 =  

U 
E, Q V ~  + 3 [3 - 2 In (443 ' 2 ,  ' 

2 u2 - - Cylinder: - 
Ez "" + 3[ 1 - 2 In (441 "' 

D - E: = 

u, = 

~ 

(3.2a) 

(3.2b) 

(3.2 c) 

For particles with fore-aft symmetry (w(  -s) = w(s)),  a: and a: are even functions of 
s and a: is an odd function of s. For such particles we have 

(3.4) 

Cu,, is the area-average of the zeta potential. 
The spheroid is an interesting case because to O(e2 In e) the stokeslets corresponding 

to translational motion (a: and a:) are independent of s. Thus, even though the 
magnitude of the stokeslets differs between parallel and perpendicular motion, the 
electrophoretic mobility, U/E,  is the same for both directions. For the cylinder, the 
electrophoretic mobility is greater for the perpendicular direction if co and 5, have the 
same sign. This behaviour is quite different from a cylinder undergoing sedimentation, 
in which case the mobility parallel to the axis approaches twice the value of the 
perpendicular case in the limit 6 + 0. This example serves as a warning against applying 
the normal intuition developed for Stokes flows with uniformly distributed body 
forces, such as gravity, to phoretic transport where the driving force. are localized near 
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FIGURE 5 .  Electrophoretic mobility ( U / E )  of a straight circular cylindcr with a periodic distnbution 
of zeta potential as given in (3.6). The open symbols indicate the applied field is parallel to the axis 
of thc cylinder and the filled symbols denote perpendicular alignment. Circles t. = 0.1 ; 
squares + c = 0.01. The mobility is made dimensionless by (Dlyl)  (kT/p). The curves represent 
cquations (3.7)-(3 8). 

the particle’s surface. Another interesting feature of electrophoresis, which is apparent 
from (3.4) and (3.5), is that particles can move in an electric field even if the area- 
average zeta potential is zero, i.e. the particle is neutral. Other examples of neutral 
particles having a finite electrophoretic mobility are available (Fair & Anderson 1989 ; 
Anderson & Solomentsev 1994). 

An interesting calculation is the mobility of a neutral cylinder with a periodic 
potential distribution : 

<(s) = cos [(2m + 1) ns], (3.6) 

where m is an integer. The mobilities ( M =  U/E ,  dimensionless) are determined by 
substituting this expression into (3.3) and using the stokeslet distributions given in 
(2.17). Plots of the mobilities versus m for a cylinder of e = 0.01 and 0.1 are shown in 
figure 5.  The potential at the ends of the cylinder, in this case ncgative, dictates the 
direction of movement because the hydrodynamic resistance to motion is the greatest 
at the ends. We also note that magnitude of the mobility is greater for perpendicular 
motion than for parallel motion. In the limit of m+ crj the mobilities approach zero as 
expected. Both the parallel and perpendicular mobilities are fit extremely well by the 
following : 

M(0) increases in magnitude as e increases. For the range 0.001 < E: < 0.1, M(0)  is 
approximated by the following expression : 

A 
In (e) + B ’ 

M(0) = ___~- (3.8) 

where A = 0.22, B = 0 for the parallel case, and A = 0.21, B = 1 for the perpendicular 
case. 
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For particles with fore-aft symmetry (w(s)  = w( - s)) only the even moments of the 
zeta potential distribution affect translation while the odd moments cause rotation. 
Without this symmetry there will be coupling between the even and odd moments of 
the potential in (3.1), as indicated by (3.2); that is, C2 would cause rotation and 5, 
translation. 

3.2. Torus 
Johnsoh & Wu (1979) determined the stokeslet functions to O(e21ne). The 
electrophoretic motion for the potential of (3.1) is cast in the form: 

The orientation of the torus relative to the fixed Cartesian axes (1,2,3) is shown in 
figure 3. The velocity of the particle was determined from (2.13) and (2.19). The non- 
zero mobilities are given below. 

(3.10) 

A novel result is the orthogonal motion resulting from the dipole coefficient a field 
oriented in the 3 direction couples with the dipole along the contour to move the torus 
in the 1 direction. To show that orthogonal motion is possible with other particles of 
relatively simple geometry, figure 6 shows a dumb-bell formed by two equal-size spheres 
connected by an infinitely thin, rigid rod. Both spheres have a quadrupole moment of the 
same magnitude I{J (see (3.1) and set s = cos 19) but opposite sign and orientation. If 
hydrodynamic interactions between the spheres are neglected, then the velocity of the 
dumb-bell in an electric field can be determined from the theory for a single non- 
uniformly charged sphere (Anderson 1985). In this case the dumb-bell moves 
perpendicular to the electric field at a speed equal to (3/10) 5, Esin 29% where 3 is the 
angle hetween the axis of the quadrupole and the field. 

These examples are meant to illustrate the relative simplicity of the theory. The 
hydrodynamic model of Cox gives an explicit relationship that allows direct calculation 
of the stokeslet distribution for any w(s) and straight or curved contours (X,(s)). Given 
the simplified nature of the model (for example, a ‘smooth’ slender surface) and the 
restriction that ~b~ $- 1, it is doubtful that a more accurate calculation of the stokeslet 
density can be justified, at least at the level of our analysis. 
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I 

I 
FIGURE 6. Perpendicular motion of a rigid body. Two spheres with quadrupole moments of equal 
magnitude but opposite sign whose axes are oriented in the 1-2 plane as shown by the arrows within 
the spheres. The rigid dumb-bell moves perpendicular to the applied field E at velocity U = (3/10) 
[sin (2 u)] f E where is the quadrupole moment of the top sphere. 

4. Uniformly charged slender particles in non-homogeneous fields 
In the examples of the previous section the undisturbed electric field is taken to be 

independent of position. We now consider a uniformly charged (< = 6) particle in a 
spatially varying electric field Em@). A uniformly charge sphere obeys Smoluchowski’s 
equation (2.2) for any field as long as V - E m  = 0 (Anderson 1985). This is not true for 
slender bodies; V E ,  causes rotation of slender particles while VVE, affects the 
translational velocity, as shown below. 

Consider a straight particle with fore-aft symmetry. The variables are non- 
dimensionalized as in the previous section, and V is normalized by L. The unit vector 
e gives the direction of the centreline axis (e = e,). Subscript 1 corresponds to the 
direction along e and (2, 3) designate the directions perpendicular to e.  The 
translational and rotational velocities are obtained from (2.13) : 

with analogous terms for U, and -Q2  (2 + 3 ,6  + 5). The slip velocity is given by (2.21) 
with E a function of position (E  = EJE,).  The Taylor expansion of E about the 
centre of the particle (X,) approximates the field along the contour of the particle: 

Combining (4.1) and (4.2) gives the velocity of the particle: 
E(s) = E(X,)+se.VE+$Pee:VVE. ( 4 4  

(4.34 
(4.3 b) 

U = C0 [E(X,) +ice: W E ] ,  
D = c0e x (e.VE). 
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Higher-order gradients are neglected. The O(VVE,) term was obtained by assuming 
the translational stokeslet function is constant, which is correct at 0 ((ln E ) ~ ’ )  for 
general slender particles; thus, this term has an error of O(( ln~)-~)  associated with it 
even if ~b~ & 1. Equation (4.3) applies to any straight, slender particle having fore-aft 
symmetry, regardless of the radius profile w(s). 

An example of a non-homogeneous field is ionic conduction in an electrolyte 
solution through a circular hole in an insulating wall, as shown in figure 7. This 
situation would arise, for example, in the electrophoretic transport of particles across 
a porous membrane. Newman (1966) and Kelman (1965) give solutions to Laplace’s 
equation for such geometries. 

An interesting question is whether or not the converging field lines into the entrance 
of the hole can align slender particles to an extent that allows them to enter the hole 
even if the particle length exceeds the pore diameter? The goal is to estimate the critical 
electrical current through the hole, I,, above which a majority of the particles in a 
suspension would be sufficiently aligned. This problem is conceptually related to the 
analysis of deformation of linear polymer chains in extensional flow through a small 
aperture (Daoudi & Brochard 1978). 

The field outside the pore at a distance r (non-dimensionalized by L)  from the hole 
much greater than the radius of the hole (a)  is approximated by the field for conduction 
into a point source: 

where I is the total current into the hole and K is the specific conductivity of the 
electrolyte solution. After the field is expanded about the centre of the particle (r = rp)  
and then substituted into (4.3) with terms of O(VVE,) and higher neglected, the 
following relations are obtained : 

(4.5 a) 

(4.5 b) 

where 6 is the solid angle between e and - rp .  If terms of O(VVE,) where included then 
there would be a small drift of the particle perpendicular to the r p  direction (in the 
direction of - e )  and ( 4 . 5 ~ )  would be slightly modified; however, use of the 
approximation (4 .4)  does not justify inclusion of this secondary migration term. The 
trajectory is found by combining the above two expressions: 

where the subscript 0 denotes the initial condition. 
Equation (4.6) seems to indicate that the current, and hence the applied potential 

difference across the hole, has no influence on the trajectory. Tn fact, the effect of the 
current is in the initial condition ( rpu,  0,). The relations (4.5) were derived neglecting 
Brownian rotation of the particle, which is a good assumption only when the rotational 
PCclet number (Pe,) exceeds one. This requirement gives us a criterion for fixing the 
initial condition; that is, rp ,  is the position of the particle when Per = Q / D ,  = 1 where 
D is a characteristic angular velocity and D, is the rotational diffusion coefficient. For 
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FIGURE 7. Uniformly charged, straight particle in a non-homogeneous electric field caused by 
conduction of current ( I )  through a circular hole in an insulating wall. The current (shown by arrows 
with broken lines) is carried by the ions of the electrolyte in the liquid. 

straight slender particles the rotational diffusion coefficient can be expressed in the 
form 

kT 

where A and g(e) depend on the profile w(s). The value of 52 is obtained from the 
constant parameters in (4.5b). Setting Pe, = 1 gives 

(4.7) D, = - AnrL3 dE)> 

If we assume a random distribution of particle orientations at this starting position 
then (cos2B,) = + and hence 0, cz 55". 

We are interested in whether or not the particle is aligned with the axis of the hole 
when r p  = L. The critical alignment for the particle to enter the hole is approximated 

L sin 8, z a. (4.9) 
by 

Combining this requirement with (4.6) and (4.8) and assuming L % a and tan 8, = 2j2 
gives the following result for the critical current: 

(4.10) 

Note that co is non-dimensionalized by kT/e while the other parameters (D,  e, K,  L, 
a) are dimensional. If the current conducted through the hole is much smaller than l, 
then very few of the particles should be sufficiently aligned to pass through, while a 
majority should pass if Z % Z,. 

As expected, the critical current is higher for smaller pores. To estimate a typical 
magnitude of I,, consider a 0.1 molar solution of potassium chloride in water at 25 "C 
(D = 6.94 x 10-loCoul/V.m, 7 = 8.94 x kg/m.s, and K = 1.288 Coul/V-m-s). c,, 
is taken equal to 1 (kT/e = 0.0257 V). For a spheroid A = and g(e) = [2 In (26-l) - 11. 
Substituting e = 0.01 into (4.10) yields 

Z, = 1.04 x 10-S(L/a) Coul scl. (4.11) 
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The electrical potential drop across a hole in a plane of zero thickness equals 1/2Ka 
(Newman 1966). Taking half of this as the critical potential (AQJ that must be applied 
across the solution on one side of the barrier, (4.11) gives 

AQC = 2.01 x 10-10((L/a2)V. (4.12) 

The critical potential drop for a hole of radius 0.1 pm and L = 1 pm would be only 
20 mV. A test for the critical current (or potential) is possible by applying a voltage 
across a microporous membrane separating two reservoirs, one of which contains a 
dilute suspension of the slender particles, and measuring the current required to drive 
the particles through the small pores. 

The above example indicates that a linear variation in the field can produce 
significant alignment of uniformly charged slender particles. Equations (4.1) could also 
be used to determine the velocity of a straight non-uniformly charged particle in a non- 
homogeneous electric field. Furthermore, these relations are expressed in terms of slip 
velocity so that they can be applied to other phoretic transport phenomena such as 
diffusiophoresis. 

5. Summary 
The equations (2.13) allow calculation of the translational and angular velocities of 

a slender particle when the slip velocity is specified along the centreline of the particle. 
The variation of u could result from a non-uniform surface property of the particle, 
such as the zeta potential, or a non-uniform applied field. These two cases are 
considered in 993 and 4. This theory applies to any linear phoretic process (Anderson 
1989) as long as the thickness of the fluid region comprising the ‘interface’ between the 
particle surface and surrounding fluid, here taken to be the Debye screening length, is 
small compared to the cross-section radius of the particle. In the examples presented 
here we have used Cox’s theory (1970) for the stokeslets along a circular cylinder or the 
more exact results available for a prolate spheroid and torus. Cox’s method for 
determining a(s) is quite useful when centreline geometries more complicated than the 
torus are considered, for example, a helix. 

The interesting feature of electrophoresis of slender particles is that the zeta potential 
of the portions of the particle that are more hydrodynamically ‘exposed’, such as the 
ends of a cylinder, have more influence than the hydrodynamically screened regions. 
This is one reason that neutral particles (i.e. particles with a zero area-average of LJ can 
have a significant translational velocity when placed in an electric field. We have applied 
the model of a circular cylinder to compute the electrophoretic mobility of a chain of 
equal size spheres each of which could have different zeta potentials (Anderson & 
Solomentsev 1994). Essentially the spheres at the ends of the chain dictate the direction 
and magnitude of the electrophoretic velocity. 

The penalty for applying the Lorentz reciprocal theorem at the outer edge of the 
double layer is that the results for U and R are valid at U(( ln~)>-~)  only when 
~ h ”  % In (e). This is because the primary source of error in (2 .7)  is in approximating the 
velocity u* at S+ by its value on Sp.  The displacement between these two surfaces is 
U(K-~). Since the velocity gradient for a slender body is 0 ((b, In e)-’), 

Therefore, the error in (2.7) is U((~h,,Ine)-’), and hence the error in (2.13) is also 
U ( ( K ~ ~  In e)-’). The consequence of the requirement % In (e) is that (2.13) is 
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probably only quantitatively accurate to O((1n .s)-l) for colloidal slender bodies 
(bundles of chain-like molecules, aggregates of colloidal particles) and not for single 
macromolecular chains such as polyelectrolytes. 

This research was supported by NASA Grant NANAG8-964. 
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